This episode features Prof. Andrew Lo, the author of a paper that we discussed recently on Linear Digressions, in which Prof. Lo uses data to predict whether a medicine in the development pipeline will eventually go on to win FDA approval. This episode gets into the story behind that paper: how the approval prospects of different drugs inform the investment decisions of pharma companies, how to stitch together siloed and incomplete datasts to form a coherent picture, and how the academics building some of these models think about when and how their work can make it out of academia and into industry. Professor Lo is an expert in business (he teaches at the MIT Sloan School of Management) and work like his shows how data science can open up new ways of doing business.
Relevant links: